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Codestral Mamba is tested on in-context

retrieval capabilities up to 256k tokens !!!

Image source: Medium blog, Emmanuel Mark Ndaliro
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Count-based vs Prediction-based

Count-based

* Fast training/ (3
* Efficient usage of statistics/

* Primarily used to capture word
similarity s

* Disproportionate importance
given to large counts ,
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Count-based vs Prediction-based

Count-based Prediction-based
* Fast training ‘3 * Scales with corpus size -~ E’
* Efficient usage of statistics * |nefficient usage of statisti
* Primarily used to capture word * Generate improved performance on
Similarity other tasks
* Disproportionate importance * | Can capture complex patterns
given to large counts beyond word similarity/
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GloVe — Global Vectors

Crucial insight: Ratios of co-occurrence probabilities can encode word meaning

P(x |ice)
P(x |steam)
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GloVe — Global Vectors

Crucial insight: Ratios of co-occurrence probabilities can encode word meaning

_ x = solid X =gas x = water x = random

P(x | ice) 1.9x10% 6.6 x 10 3.0x10°3 1.7 x107°

P(x | steam) 2.2x10° 7.8x10* 2.2 x 108 _1.8x10°
- A -
P(x |ice =
i) 9 8.5 x 1072 \, (096
P(x |steam)

Jeffrey Pennington, Richard Socher, Christopher D. Manning, “GloVe: Global Vectors for Word Representation”, 2014
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Co-occurrence Matrix

e Letus dePote\the co-l?céurrence matrix as X. Compute. P(j| |) from X, for two

0 2 1 0 0 0 0 0

Nl like 2 0 0 1 0 1 0 0 P(jli) = Xij =Xij

— Y 1 0 0 0 0 0 1 0 Zle-j X;
deep 0 1 0 0 1 0 0 0
B (carning O 0 0 1 0 0 0 1
- o 1 0 0 0 0 0 1
flying 0 0 1 0 0 0 0 1
0 0 0 0 1 1 1 0

LLMs: Introduction and Recent Advances ‘] Tanmoy Chakraborty



https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Learn Word Vectors Based on These Counts

* For the two words, / and j, assume their corresponding representation vectors are w; and

w, respectively.
o Ly U u\\\

* w; w; = log P(j|i) Wy 5~

—— —— Wy d

Similarity How likely is j to /

W:;a::vleae:dj occurin :,:? context \z ,\,\

%
‘ log logXU log X; e (1)
Slmllarly,w w; = log% logX;; —logX; .. (2)
-é.

———— S~
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Learn Word Vectors Based on These Counts

- w/ w; = log = log X;; —logX; - .. (1) /

Similarly, Wj w; = log =log X;; —logX; 7

* Adding (1) and (2):
,ZW,;TWJ- =,'2/logXi] logX; —lo
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Learn Word Vectors Based on These Counts

* log X; and log X; depends only on/andj respectively — ca thought of as Word—spﬁeific
biases
* These are made learnable (considered as biases) X .\ &
~ \?
" . 'y - . s

* W, W, b, bj are the learnable parameters

* Loss function: min v b, b, Y j(ww; Hb; +/bD log X;; )?
— =
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Learn Word Vectors Based on These Counts

Loss function: min v p.b; Z”O )2

* Problem: Gives equal weightage to every co- occurrence”

* |deally, rare and very frequent co-occurrences should have lesser weightage

» Modification: Add a weighting functior@

* Modified loss function: min v b, b Zi,jf(gXij'?(wiTWj + b; + bj — log X;; )2

What can f possibly be?

S
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Weighting function
e

\/W L) xmax)? X < Xpax
f('l) - 1

= —
——

a candie chosen empirically

otherwise for a given dataset.

—

Properties of f:

l. f(0) = 0. If f is viewed as a continuous
‘ function, it should vanish as x — 0 fast

enough that the lim I_}F fix) ]{'.rg2 x 1% finite.

i

. f(x) should be nun-@u that rare f ~ s é
co-occurrences are not overwelghted. |

B. f(x) should be relatively small for large val-
ues of x, so that frequent co-occurrences are o1 . . Y -
not overweighted. _ ——— _ . — R =2 4 7& ')
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GloVe: Advantages

* Fast training /
* Scalable to huge Corpora/

* Good performance even with small corpus and small vectors

—— —
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Details About GloVe g o

Original paper: https://nlp.stanford.edu/pubs/glove.pdf / A

Blogs with easy explanations:

- ¢ https://medium.com/sciforce/word-vectors-in-natural-language-processing-global-vectors-glove-
51339db89639

* https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/?fbclid=IwAR3-
pws3-K-Snfk6aqbixdxS8zFf-uuPDJ_0ipb94kWeygrd CSEQE9HWmMNSs

* https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-
) b13b4f19c010
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We will see how we can use these separately
trained word embeddings (or train/update
embeddings on-the-fly) as we perform language
modeling using Neural Nets!
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